Math 103 Day 9: Related Rates

Ryan Blair

University of Pennsylvania

Tuesday October 7, 2010

Outline

(1) Related Rates

Related Rates is the most important application of calculus we have seen so far.

Example Air is being pumped into a spherical balloon so that its volume increases at a rate of $10 \frac{\mathrm{~cm}}{\mathrm{~s}}$. How fast is the radius of the balloon increasing when the diameter is 4 cm ?

Example Air is being pumped into a spherical balloon so that its volume increases at a rate of $10 \frac{\mathrm{~cm}}{\mathrm{~s}}$. How fast is the radius of the balloon increasing when the diameter is 4 cm ?

How To Approach These Problems

(1) What quantities are given in the problem?
(2) What is the unknown?
(3) Draw a picture of the situation with labels.
(9) Write an equation that relates the quantities.
(5) Finish solving the problem.

Example A water tank has the shape of an inverted circular cone with base radius 2 meters and a height of 3 meters. If the water is being pumped into the tank at a rate of $3 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$, find the rate at which the water level is rising when the water is 2 meters deep.

Example A water tank has the shape of an inverted circular cone with base radius 2 meters and a height of 3 meters. If the water is being pumped into the tank at a rate of $3 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$, find the rate at which the water level is rising when the water is 2 meters deep.
(1) What quantities are given in the problem?
(2) What is the unknown?
(3) Draw a picture of the situation with labels.
(3) Write an equation that relates the quantities.
(5) Finish solving the problem.

ExampleA ladder 6 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $.5 \frac{\mathrm{ft}}{\mathrm{sec}}$, how fast is the top of the ladder sliding when it is 1 ft above the ground?

ExampleA ladder 6 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $.5 \frac{\mathrm{ft}}{\mathrm{sec}}$, how fast is the top of the ladder sliding when it is 1 ft above the ground?
(1) What quantities are given in the problem?
(2) What is the unknown?
(3) Draw a picture of the situation with labels.
(3) Write an equation that relates the quantities.
(3) Finish solving the problem.

Example A round oil slick uniformly 0.1 cm thick is being fed by a leak in an off shore oil rig at a rate of $2 \frac{\mathrm{~m}^{3}}{\mathrm{sec}}$. Sea turtles have bad eyesight and only see the oil as it is nearly on top of them. If sea turtles swim at a rate of $1 \frac{m}{\text { sec }}$ and begins swimming away from the slick as they see it approaching, how far away from the oil rig does a turtle need to be to avoid being overcome by the slick.

Example A round oil slick uniformly 0.1 cm thick is being fed by a leak in an off shore oil rig at a rate of $2 \frac{\mathrm{~m}^{3}}{\mathrm{sec}}$. Sea turtles have bad eyesight and only see the oil as it is nearly on top of them. If sea turtles swim at a rate of $1 \frac{m}{\text { sec }}$ and begins swimming away from the slick as they see it approaching, how far away from the oil rig does a turtle need to be to avoid being overcome by the slick.
(1) What quantities are given in the problem?
(2) What is the unknown?
(3) Draw a picture of the situation with labels.
(3) Write an equation that relates the quantities.
(5) Finish solving the problem.

Example

A light house is located on small island 3 km away from the nearest point P on a straight shore line and its light makes four revolutions per minute. How fast is the beam of light moving along the shoreline when it is 1 km from P.

Example

A light house is located on small island 3 km away from the nearest point P on a straight shore line and its light makes four revolutions per minute. How fast is the beam of light moving along the shoreline when it is 1 km from P.
(1) What quantities are given in the problem?
(2) What is the unknown?
(3) Draw a picture of the situation with labels.
(3) Write an equation that relates the quantities.
(2) Finish solving the problem.

